
 1

Modelling of ASCI High Performance Applications Using PACE

Junwei Cao, Darren J. Kerbyson, Efstathios Papaefstathiou, and Graham R. Nudd

High Performance Systems Laboratory
Department of Computer Science, University of Warwick, UK

http://www.dcs.warwick.ac.uk/~hpsg/
email: {junwei, djke}@dcs.warwick.ac.uk

Abstract

There is a wide range of models being developed for the
performance evaluation of parallel and distributed
systems. This has become an important area of research
especially with the development of dynamic processing
capabilities promised with Computational GRIDs [3]. A
performance modelling approach described in this paper
is based on a layered framework of the PACE
methodology. In this system, the model described by a
Performance Specification Language (PSL) provides the
capability for rapid calculation of relevant performance
information without sacrificing accuracy of predictions.
An example of the performance evaluation of an ASCI
kernel application, Sweep3D, is used to illustrate the
approach. The validation of the model is shown for a
cross-platform analysis on two parallel and distributed
architectures with different problem sizes. Results show
that a reasonable accuracy (approximately 10% error at
most) can be obtained with a rapid evaluation time
(typically less than 2s).

1 Introduction

Performance evaluation is an active area of interest
especially within the parallel and distributed systems
community where the principle aim is to demonstrate
substantially increased performance over traditional
sequential systems.

Computational GRIDs, composed of distributed and
often heterogeneous computing resources, are becoming
the platform-of-choice for many performance-challenged
applications [3]. Proof-of-concept implementations have
demonstrated that both GRIDs and clustered
environments have the potential to provide great
performance benefits to distributed applications. Thus, at
the present time, performance analysis, evaluation and
scheduling are essential in order for applications to
achieve high performance in GRIDs environments.

The techniques and tools that are being developed for

the performance evaluation of parallel and distributed
computing systems are manifold, each having their own
motivation and methodology. The main research projects
currently in progress in this area include:

• POEMS [2]. The aim of this work is to create a
problem-solving environment for end-to-end
performance modelling of complex parallel and
distributed systems. This spans application
software, run-time and operating system software,
and hardware architecture. The project supports
evaluation of component functionality through the
use of analytical models and discrete-event
simulation at multiple levels of detail. The
analytical models include deterministic task graph
analysis, and LogP, LoPC models [4].

• Parsec [1]. A parallel simulation environment for
complex systems, which includes a C-based
simulation language, a GUI (Pave), and a portable
run-time system that implements the simulation
operations.

• AppLeS [14]. An application-level scheduler using
expected performance as an aid. Performance
predictions are generated from structural models,
consisting of components that represent the
performance activities (e.g. computation or
communication activities) of the application.

• CHAOS [16]. A part of this work is concerned with
the performance prediction of large scale data
intensive applications on large scale parallel
machines. It includes a simulation-based
framework to predict the performance of these
applications on existing and future parallel
machines.

• RSIM [11]. This work consists of a simulation
approach whose key is that it supports a processor
model that aggressively exploits instruction-level
parallelism (ILP) and is more representative of
current and near-future processors.

The motivation to develop a Performance Analysis
and Characterization Environment (PACE) in the work
presented here is to provide quantitative data concerning

 2

the performance of sophisticated applications running on
high performance systems [10]. The framework of
PACE is a methodology based on a layered approach
that separates out the software and hardware system
components through the use of a parallelisation template.
This is a modular approach that leads to readily reusable
models, which can be interchanged for experimental
analysis.

Each of the modules in PACE can be described at
multiple levels of detail in a similar way to POEMS,
thus providing a range of result accuracies but at varying
costs in terms of prediction evaluation time. PACE is
aimed to be used for pre-implementation analysis, such
as design or code porting activities as well as for on-the-
fly use in scheduling systems in similar manner to that of
AppLeS.

The core component of PACE is a Performance
Specification Language (PSL) [12]. PSL provides the
syntax and semantics to describe workloads for both
sequential and parallel parts of an application. This
includes control flow information, resource usage
information (e.g. number of operations), communication
structures and mapping information for a parallel or
distributed system.

In the work presented in this paper, the use of the
PACE system is described through an example
application kernel – Sweep3D [8]. Sweep3D is a part of
the ASCI application suite [9], which has been used to
evaluate advanced parallel architectures at Los Alamos
National Laboratories. The capabilities for performance
evaluation within PACE are illustrated through the
cross-platform use of Sweep3D on both an SGI
Origin2000 (a shared memory system), and a cluster of
SunUltra1 workstations.

The rest of the paper is organised as follows: Section
2 describes the performance modelling approach based
on the PACE conceptual framework. Section 3 gives an
overview of the Sweep3D application and how it is
described within PSL. Section 4 illustrates the
performance predictions that can be produced by PACE
on the two systems considered. Preliminary conclusions
are discussed in Section 5.

2 PACE Performance Modelling Approach

The main concepts behind PACE include a layered
framework, and the use of associative objects as a basis
for representing system components. An initial
implementation of PACE supports performance
modelling of parallel and distributed applications from
object definition, through to model creation, and result
generation. These factors are described further below.

2.1 Layered Framework

Many existing techniques, particularly for the analysis
of serial machines, use Software Performance
Engineering (SPE) methodologies [15], to provide a

representation of the whole system in terms of two
modular components, namely a software execution
model and a system model. However, for high
performance computing systems, which involve
concurrency and parallelism, the model must be
enhanced. The layered framework is an extension of SPE
for the characterisation of parallel and distributed
systems. It supports the development of three types of
models: software model, parallelisation model and
system (hardware) model. It allows the separation of the
software and hardware model by the addition of the
intermediate parallelisation model.

The framework and layers can be used to represent
entire systems, including: the application, parallelisation
and hardware aspects, as illustrated in Figure 1.

Figure 1. The Layered Framework

The functions of the layers are:

• Application Layer – describes the application in
terms of a sequence of parallel kernels or subtasks.
It acts as the entry point to the performance study,
and includes an interface that can be used to
modify parameters of a performance study.

• Application Subtask Layer – describes the
sequential part of every subtask within an
application that can be executed in parallel.

• Parallel Template Layer – describes the parallel
characteristics of subtasks in terms of expected
computation-communication interactions between
processors.

• Hardware Layer – collects system specification
parameters, micro-benchmark results, statistical
models, analytical models, and heuristics to
characterise the communication and computation
abilities of a particular system.

According to the layered framework, a performance
model is built up from a number of separate objects.
Each object is of one of the following types: application,
subtask, parallel template, and hardware. A key feature
of the object organization is the independent
representation of computation, parallelisation, and
hardware. This is possible due to strict object interaction
rules.

All objects have a similar structure, and a hierarchical
set of objects, representing the layers of the framework,

Application Domain

Application Layer

Subtask Layer

Parallel Template Layer

Hardware Layer

 3

is built up into the complete performance model. An
example of a complete performance model, represented
by a Hierarchical Layered Framework Diagram (HLFD),
is shown in Figure 6.

2.2 Model Creation

The creation of a software object in PACE system is
achieved through the Application Characterization Tool
(ACT). ACT aids the conversion of sequential or parallel
source code into the PSL via the Stanford Intermediate
Format (SUIF) [5]. ACT performs a static analysis of the
code to produce the control flow of the application,
operation counts in terms of high-level language
operations [13], and also the communication structure.
This process is illustrated in Figure 2.

Figure 2. Model Creation Process with ACT

In PACE a Hardware Model Configuration Language
(HMCL) allows users to create new hardware objects by
specifying system-dependent parameters. On evaluation,
the relevant sets of parameters are used, and supplied to
the evaluation methods for each of the component
models. An example is shown in Figure 3 illustrating the
main subdivision currently considered involving a
distinction between computation, communication,
memory and I/O models. Currently analytical models
have been developed for all of the components shown in
Figure 3 [6].

Figure 3. Example Hardware Object

2.3 Mapping Relations

There are strict mapping relations between source
code of the application and its performance model.
Figure 4 illustrates the way in which independent objects
are abstracted directly from the source code and built up
into a complete performance model which can be used to
produce performance prediction results.

Figure 4. Mapping Relations

The mapping relations are controlled by the PSL
compiler and the PACE evaluation engine, which will be
described further in the next section through the use of
the example application – Sweep3D.

3 Sweep3D: An Example Application

In this section we illustrate the PACE modelling
capabilities for performance prediction of Sweep3D – a
complex benchmark for evaluating wavefront
application techniques on high performance parallel and
distributed architectures [8]. This benchmark is also
being analysed by other performance prediction
approaches including POEMS [2]. This section contains
a brief overview and the model description of this
application. In Section 4 the model is validated with
results on two high performance systems.

3.1 Overview of Sweep3D

The benchmark code Sweep3D represents the heart of
a real Accelerated Strategic Computing Initiative (ASCI)
application [9]. It solves a 1-group time-independent
discrete ordinates (Sn) 3D cartesian (XYZ) geometry
neutron transport problem. The XYZ geometry is
represented by a 3D rectangular grid of cells indexed as
IJK. The angular dependence is handled by discrete
angles with a spherical harmonics treatment for the
scattering source. The solution involves two main steps:

• the streaming operator is solved by sweeps for each
angle, and

• the scattering operator is solved iteratively.

A sweep (Sn) proceeds as follows. For one of eight
given angles, each grid cell has 4 equations with 7
unknowns (6 faces plus 1 central); boundary conditions
complete the system of equations. The solution is by a
direct ordered solve known as a sweep from one corner
of the data cube to the opposite corner. Three known
inflows allow the cell centre to be solved producing
three outflows. Each cell's solution then provides inflows

Source
Code

SUIF
Front End

SUIF
Format

User Profiler

A
C
T

Application
Layer

Parallelisation
Layer

Application
Source Code

Model Scripts

Parallel
Template

Subtask

H
a

rd
w

a
re

 O
bj

ec
t

(H
M

C
L)Abstracted

Parallel
Part
 ...

Serial
PartSerial

PartSerial
Part

Hardware Object

• • • • • •

CPU

Memory

Network

clc

Cache L2 MainCache L1

Sockets MPI PVM

flc suif ct

 4

to 3 adjoining cells (1 in each of the I, J, & K directions).
This represents a wavefront evaluation in all 3 grid
directions. For XYZ geometries, each octant of angles
has a different sweep direction through the mesh, but all
angles in a given octant sweep the same way.

Sweep3D exploits parallelism through the wavefront
process. The data cube undergoes a decomposition so
that a set of processors, indexed in a 2D array, hold part
of the data in the I and J dimensions, and all of the data
in the K dimension. The sweep processing consists of
pipelining the data flow from each cube vertex in turn to
its opposite vertex. It is possible for different sweeps to
be in operation at the same time but on different
processors.

Figure 5. Data Decomposition of the Sweep3D Cube

For example, Figure 5 depicts a wavefront (shaded in
Grey) that originated from the unseen vertex in the cube,
and is about to finish at vertex A. At the same time, a
further wavefront is starting at vertex B and will finish at
vertex C. Note that the example shows the use of a 5x5
grid of processors, and in this case each processor holds
a total of 2x2x10 data elements (data set of 10x10x10).

3.2 Model Description

We define the application object of the performance

Figure 6. Sweep3D Object Hierarchy
(HLFD Diagram)

model as sweep3d, and divide each iteration of the
application into four subtasks according to their different
functions and different parallelisations. The object
hierarchy is shown in Figure 6, each object is a separate
rectangle and is labelled with the object name.

The functions of each object are:

• sweep3d – the entry of the whole performance
model. It initialises all parameters used in the
model and calls the subtasks iteratively according
to the convergence control parameter (epsi) as
input by the user. Figure 7 describes different parts
of the sweep3d object clearly in PSL scripts.

Figure 7. Sweep3D Application Object

• source – subtask for getting the source moments,
which is actually a sequential process.

• sweep – subtask for sweeper, which is the core
component of the application.

• fixed – subtask to compute the total flux fixup
number during each iteration.

• flux_err – subtask to compute the maximum of
relative flux error.

• async – a sequential “parallel” template.
• pipeline – parallel template specially made for the

sweeper function.
• globalsum – parallel template which represents the

Application
Object

Subtask
Object

sweep3d

sweepsource flux_errfixed

Parallel
Template
Object

Hardware
Object

async pipeline global
sum

global
max

SgiOrigin2000

application sweep3d { (* name *)
 include hardware; (* using other objects *)
 include source;
 include sweep;
 include fixed;
 include flux_err;
 var numeric: (* internal variables *)
 npe_i = 2,
 npe_j = 3,
 mk = 10,
 mmi = 3,
 it_g = 50,
 jt_g = 50,
 kt = 50,
 epsi = -12,
 ······
 link { (* passing parameters
 hardware: to other objects *)
 Nproc = npe_i * npe_j;
 source:
 it = it,
 ······
 sweep:
 it = it,
 ······
 }
 option { (* evaluation configurations *)
 hrduse = "SgiOrigin2000";
 }
 proc exec init { (* object code *)
 ······
 for(i = 1;i <= -epsi;i = i + 1) {
 call source;
 call sweep;
 call fixed;
 call flux_err;

}
 }
}

K

IJ

A

B

C

 5

parallel pattern for getting the sum value of a given
parameter from all the processors.

• globalmax – parallel template which represents the
parallel pattern for getting the maximum value of a
given parameter from all the processors.

• SgiOrigin2000 – contains all the hardware
configurations for SGI Origin2000, which is
comprised of smaller component hardware models
already in existence within PACE. This can be
interchanged with a hardware model of a different
system, e.g. a cluster of SUN workstations.

The example model objects and their correspondence
with the C source code is shown in Figure 8. Figure 8A
is the C source code of showing part of the main
function sweep, whose serial parts have been abstracted
into a number of sub-functions in bold font. Figure 8C
shows how the same source code structure is used to
provide the parallel template description. Figure 8B is an
example sub-function source code which can be
converted automatically to the control flow procedure in
the subtask object as shown in Figure 8D.

Figure 8. Mapping between Sweep3D Model Objects and C Source Code

Sweep3D Source Code

void last() {
 #pragma capp If do_dsa
 if (do_dsa) {
 i = i0 - i2;
 #pragma capp Loop mmi
 for(mi = 1; mi <= mmi; mi++) {
 m = mi + mio;
 #pragma capp Loop nk
 for(lk = 1; lk <= nk; lk++) {
 k = k0 + sign(lk-1,k2);
 #pragma capp Loop jt
 for(j = 1; j <= jt; j++) {
 Face[i+i3][j][k][1] =
 Face[i+i3][j][k][1] +
 wmu[m]*Phiib[j][lk][mi];
 }
 }
 }
 }
}

void work() {
 #pragma capp If do_dsa
 if (do_dsa) {
 i = i0 - i2;
 #pragma capp Loop mmi
 for(mi = 1; mi <= mmi; mi++) {
 m = mi + mio;
 #pragma capp Loop nk
 for(lk = 1; lk <= nk; lk++) {
 k = k0 + sign(lk-1,k2);
 #pragma capp Loop jt
 for(j = 1; j <= jt; j++) {
 Face[i+i3][j][k][1] =
 Face[i+i3][j][k][1] +
 wmu[m]*Phiib[j][lk][mi];
 }
 }
 }
 }
}

Sweep3D Performance Model Scripts

void compu_face() {
 #pragma capp If do_dsa
 if (do_dsa) {
 i = i0 - i2;
 #pragma capp Loop mmi
 for(mi = 1; mi <= mmi; mi++) {
 m = mi + mio;
 #pragma capp Loop nk
 for(lk = 1; lk <= nk; lk++) {
 k = k0 + sign(lk-1,k2);
 #pragma capp Loop jt
 for(j = 1; j <= jt; j++) {
 Face[i+i3][j][k][1] =
 Face[i+i3][j][k][1] +
 wmu[m]*Phiib[j][lk][mi];
 }
 }
 }
 }
}

subtask sweep {

 proc cflow comp_face {(* Calls: sign *)
 compute <is clc, FCAL>;
 case (<is clc, IFBR>) {
 do_dsa:
 compute <is clc, AILL, TILL, SILL>;
 loop (<is clc, LFOR>, mmi) {
 compute <is clc, CMLL, AILL, TILL, SILL>;
 loop (<is clc, LFOR>, nk) {
 compute <is clc, CMLL, AILL>;
 compute <is clc, AILL>;
 call cflow sign;
 compute <is clc, TILL, SILL>;
 loop (<is clc, LFOR>, jt) {
 compute <is clc, CMLL, 2*ARD4, ARD3,
 ARD1, MFDL, AFDL, TFDL, INLL>;
 }
 compute <is clc, INLL>;
 }
 compute <is clc, INLL>;
 }
 }
 } (* End of comp_face *)
 proc cflow work { }
 proc cflow last { }

}

partmp pipeline {

 proc exec init {

 step cpu { confdev Tx_sweep_init; }
 for(phase = 1; phase <= 8; phase = phase + 1){
 step cpu { confdev Tx_octant; }
 step cpu { confdev Tx_get_direct; }
 for(i = 1; i <= mmo; i = i + 1) {
 step cpu { confdev Tx_pipeline_init; }
 for(j = 1; j <= kb; j = j + 1) {
 step cpu { confdev Tx_kk_loop_init; }
 for(x = 1; x <= npe_i; x = x + 1)
 for(y = 1; y <= npe_j; y = y + 1) {
 myid = Get_myid(x, y);
 ew_rcv = Get_ew_rcv(phase, x, y);
 if(ew_rcv != 0)
 step mpirecv { confdev ew_rcv, myid, nib; }
 else
 step cpu on myid { confdev Tx_else_ew_rcv; }
 }
 step cpu { confdev Tx_comp_face; }
 for(x = 1; x <= npe_i; x = x + 1)
 for(y = 1; y <= npe_j; y = y + 1) {
 myid = Get_myid(x, y);
 ns_rcv = Get_ns_rcv(phase, x, y);
 if(ns_rcv != 0)
 step mpirecv { confdev ns_rcv, myid, njb; }

 else
 step cpu on myid { confdev Tx_else_ns_rcv; }
 }
 step cpu { confdev Tx_work; }

 }
 step cpu { confdev Tx_last; }
 }
 }
 }
}

void sweep() {

 sweep_init();
 for(iq = 1; iq <= 8; iq++) {
 octant();
 get_direct();
 for(mo = 1; mo <=mmo; mo++) {
 pipeline_init();
 for(kk = 1; kk <= kb; kk++) {
 kk_loop_init();

 if (ew_rcv != 0)
 info = MPI_Recv(Phiib, nib,
 MPI_DOUBLE, tids[ew_rcv],
 ew_tag, MPI_COMM_WORLD,
 &status);
 else
 else_ew_rcv();

 comp_face();

 if (ns_rcv != 0)
 info = MPI_Recv(Phijb, njb,
 MPI_DOUBLE, tids[ns_rcv],
 ns_tag, MPI_COMM_WORLD,
 &status);
 else
 else_ns_rcv();

 work();

 }
 last();
 }
 }
}

config SgiOrigin2000 {

 hardware {

 }
 pvm {

 }
 mpi {

 DD_COMM_A = 512,
 DD_COMM_B = 33.228,
 DD_COMM_C = 0.02260,
 DD_COMM_D = -5.9776,
 DD_COMM_E = 0.10690,
 DD_TRECV_A = 512,
 DD_TRECV_B = 22.065,
 DD_TRECV_C = 0.06438,
 DD_TRECV_D = -1.7891,
 DD_TRECV_E = 0.09145,
 DD_TSEND_A = 512,
 DD_TSEND_B = 14.2672,
 DD_TSEND_C = 0.05225,
 DD_TSEND_D = -12.327,
 DD_TSEND_E = 0.07646,

 }
 clc {

 MFSL = 0.00602936,
 MFSG = 0.025046,
 MFDL = 0.0068927,
 MFDG = 0.011226,

 ARDN = 0.000612696,
 ARD1 = 0.0094727,
 ARD2 = 0.0234027,
 ARD3 = 0.0438327,
 ARD4 = 0.0672354

 CMLL = 0.0098327,
 CMLG = 0.0203127,
 CMSL = 0.0096327,
 CMSG = 0.0305927,
 CMCL = 0.0100327,
 CMCG = 0.0223627,
 CMFL = 0.0107527,
 CMFG = 0.0229227,
 CMDL = 0.0106327,
 CMDG = 0.0227327,
 IFBR = 0.0020327,

 FCAL = 0.030494,
 LFOR = 0.011834,

 }
}

A C

EB D

Profiling

 6

Some of the main statements used in the PSL to
represent the performance aspects of the source code are
as follows:

• compute – a processing part of the application, its
arguement is a resource usage vector. This vector is
evaluated through the hardware object.

• loop – the body of which includes a list of the
control flow statements that will be repeated.

• call - used to execute another procedure.
• case – the body of which includes a list of

expressions and corresponding control flow
statements which might be evaluated.

• step – corresponds to the use of one of the
hardware resources of the system. Its arguement is
used to configure the device specified in the
current step. This is used in parallel templates only.

• confdev – configures a device. The meaning of its
arguments depend on the device. For example, the
device mpirecv (MPI receive communication
operation) accepts three arguments: source
processor ID, destination processor ID and
message size.

It can be seen from the part of the Sweep3D model
shown in Figure 8 that there is a lot of information
extracted from the source code that is used for the
performance prediction. The accuracy of the resulting
model is of importance, and in Section 4 below, detailed
results are shown to validate the model with

measurements on the two systems considered.
Figure 8 also shows the inner mapping between the

software objects and hardware object of the performance
model. The abundant off-line configuration information
included by the hardware object is the basis to
implement a rapid evaluation time to produce the
performance predictions.

4 Validation Results

In this section the preliminary validation results on
execution time for Sweep3D are given to illustrate the
accuracy of the PACE modelling capabilities for
performance evaluation. The procedures in the PACE
evaluation engine to achieve these results is complex and
out of the scope of this paper. Further details can be
found in [10].

Figure 9 shows the validation of the PACE model
against the code running on an SGI Origin2000 shared
memory system. Note that the result for single processor
input is not included because there are many special
configurations, which are not included to current
performance model for the sequential code. As shown in
the figure, run time decreases when the number of
processors increases. At the same time the parallel
efficiency decreases too. In fact when the number of
processors is more than 16, the run time does not
improve any further.

Figure 9. PACE Model Validation on SGI Origin2000

grid size: 15x15x15

0

1

2

3

4

5

02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
Processors

Run
time
(sec) Model

Measured

grid size: 25x25x25

0

5

10

15

20

25

02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
Processors

Run
time
(sec) Model

Measured

grid size: 50x50x50

0

50

100

150

200

250

02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
Processors

Run
time
(sec) Model

Measured

grid size: 35x35x35

0

10

20

30

40

50

60

70

80

02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
Processors

Run
time
(sec) Model

Measured

 7

Figure 10. PACE Model Validation on Cluster of SunUltra1Workstations

By only changing the hardware object to the
SunUltra1 predictions on this new system can be
obtained as shown in Figure 10. A cluster of 9 SunUltra1
workstations was used to obtain the measurements
assuming no background loading. The run time spent is
much more than that on SGI Origin2000 with the same
workload. But the trend of the curve is almost the same.

The accuracy of the prediction results were evaluated
as follows:

The errors between measurements and predictions are
shown in Table 1, for the SGI Origin2000, and in Table
2 for the SunUltra1 Workstation Cluster. It can be seen
that the maximum error is 10% in both cases, but the
average error is approx. 5%.

Table 1. Prediction Error on SGI Origin2000
Err.(%) 15X15X15 25X25X25 35X35X35 50X50X50

1X2 6.53 10.44 7.02 -5.02

2X2 0.45 4.60 9.37 9.80

2X3 1.38 -0.73 4.47 -2.46

2X4 -5.66 0.82 1.12 -5.60

3X3 -0.29 -0.13 0.48 -4.55

3X4 -4.72 -4.92 -1.13 -7.62

4X4 -9.54 -4.90 -11.44 0.20

Table 2. Prediction Error on SunUltra1
Err.(%) 15X15X15 25X25X25 35X35X35 50X50X50

1X2 -6.79 0.15 3.24 -1.12

2X2 7.07 8.07 5.62 5.30

2X3 4.00 1.64 -0.20 0.32

2X4 2.85 -1.49 -4.30 -10.06

3X3 5.01 3.42 2.27 0.82

Besides the reasonable accuracy, the performance
model can be used to obtain the evaluation results in a
rapid time period, typically less than 2s. This is a key
feature of PACE that enables the performance models to
be used to aid to steer the application execution onto an
available system at run-time in an efficient manner [7].

5 Conclusions

This work has described a performance modelling
approach for parallel and distributed computing using
the PACE toolset. A case study of the Sweep3D
application has been given containing both model
descriptions and validation results. The main parts of the
system include:

• a layered framework,
• a Performance Specification Language (PSL),
• a semi-automated Application Characterization

Tool (ACT),

grid size: 15x15x15

0

2

4

6

8

10

12

14

02 03 04 05 06 07 08 09
Processors

Run
time
(sec)

Model
Measured

grid size: 25x25x25

0

10

20

30

40

50

60

02 03 04 05 06 07 08 09
Processors

Run
time
(sec)

Model
Measured

grid size: 35x35x35

0

20

40

60

80

100

120

140

160

02 03 04 05 06 07 08 09
Processors

Run
time
(sec)

Model
Measured

grid size: 50x50x50

0
50

100
150
200
250
300
350
400
450
500

02 03 04 05 06 07 08 09
Processors

Run
time
(sec)

Model
Measured

100%.
tMeasuremen

| Predictionnt Measureme|
Error ×

−
=

 8

• a Hardware Model Configuration Language
(HMCL), and

• strict mapping relations to get a performance
model directly from the source code with
maximum application information.

These lead to the key features of PACE which
include: a reasonable prediction accuracy –
approximately 10% error at most; a rapid evaluation
time – typically less than 2s for a given system and
problem size; and easy performance comparison across
different computational systems. It has been shown that
the PACE performance system can produce reliable
performance information which may be used for
investigating application and system performance in
many different ways.

 The PACE system is currently being extended to
provide support for performance prediction in
computational environments which may be dynamically
changing, and to aid the scheduling of multiple
applications on the available resources. This corresponds
in part to the challenges currently posed by the
development of Computational GRIDs.

Acknowledgement

This work is funded in part by DARPA contract
N66001-97-C-8530, awarded under the Performance
Technology Initiative administered by NOSC.

References

[1] R. Bagrodia, R. Meyer, M. Takai, Y.A Chen, X.
Zeng, J. Martin, and H.Y. Song, “Parsec: A Parallel
Simulation Environment for Complex Systems”,
IEEE Computer, Vol. 31(10), pp. 77-85, October
1998.

[2] E. Deelman, A. Dube, A. Hoisie, Y. Luo, R.L.
Oliver, D. Sundaram-Stukel, H. Wasserman, V.S.
Adve, R. Bagrodia, J.C. Browne, E. Houstis, O.
Lubeck, J. Rice, P.J. Teller, and M.K. Vernon,
“POEMS: End-to-end Performance Design of Large
Parallel Adaptive Computational Systems”,
Proceedings of the ACM 1st International Workshop
on Software and Performance, pp. 18-30, 1998.

[3] I. Foster, and C. Kesselman, “The GRID: Blueprint
for a New Computing Infrastructure”, Morgan-
Kaufmann, July 1998.

[4] M.I. Frank, A. Agarwal, and M.K. Vernon, “LoPC:
Modelling Contention in Parallel Algorithms”,
Proceedings of 6th ACM SIGPLAN Symposium on
Principles and Practices of Parallel Programming
(PpoPP ’97), Las Vegas, pp. 62-73, June 1997.

[5] M.W. Hall, J.M. Anderson, S.P. Amarasinghe, B.R.
Murphy, S. Liao, E. Bugnion, and M.S. Lam,
“Maximizing Multiprocessor Performance with the

SUIF Compiler”, IEEE Computer, Vol. 29(12), pp.
84-89, December 1996.

[6] J.S. Harper, D.J. Kerbyson, G.R. Nudd, “Analytical
Modeling of Set-Associative Cache Behavior”, to
appear in IEEE Transactions on Computers, 1999.

[7] D.J. Kerbyson, E. Papaefstathiou, and G.R. Nudd,
“Application Execution Steering Using On-the-fly
Performance Prediction”, in: High Performance
Computing and Networking, Springer-Verlag, 1998.

[8] K.R. Koch, R.S. Baker, and R.E. Alcouffe,
“Solution of the First-Order Form of the 3-D
Discrete Ordinates Equation on a Massively Parallel
Processor”, Trans. of the Amer. Nuc. Soc., Vol.
65(108), 1992.

[9] D.A. Nowak, R.C. Christensen, “ASCI
Applications”, Report 232247, Lawrence Livermore
National Laboratory, American, November 1997.

[10] G.R. Nudd, D.J. Kerbyson, E. Papaefstathiou, S.C.
Perry, J.S. Harper, and D.V. Wilcox, “PACE – A
Toolset for the Performance Prediction of Parallel
and Distributed Systems”, to appear in High
Performance Systems, Sage Science Press, 1999.

[11] V.S. Pai, P. Ranganathan, and S.V. Adve, “RSIM
Reference Manual. Version 1.0”, Department of
Electrical and Computer Engineering, Rice
University, Technical Report 9705, July 1997.

[12] E. Papaefstathiou, D.J. Kerbyson, G.R. Nudd, and
T.J. Atherton, “An Overview of the CHIP³S
Performance Prediction Toolset for Parallel
Systems”, in Proceedings 8th ISCA International
Conference on Parallel and Distributed Computing
Systems, Orlando, pp. 527-533, 1995.

[13] B. Qin, H.A. Sholl, and R.A. Ammar, “Micro Time
Cost Analysis of Parallel Computations”, IEEE
Transactions on Computers, Vol. 40(5), pp613-628,
1991.

[14] J.M. Schopf, “Structural Prediction Models for
High-Performance Distributed Applications”,
Proceedings of 1997 Cluster Computing Conference
(CCC ’97), Atlanta, 1997.

[15] C.U. Smith, “Performance Engineering of Software
Systems”, Addison Wesley, 1990.

[16] M. Uysal, T.M. Kurc, A. Sussman, and J. Saltz, “A
Performance Prediction Framework for Data
Intensive Applications on Large Scale Parallel
Machines”, Proceedings of the 4th Workshop on
Languages, Compilers and Run-time Systems for
Scalable Computers (LCR '98), 1998.

